Resources
Highlighted Clinical Literature - Soft Tissues
Pulmonary arterioplasty with decellularized allogeneic patches. Hopkins RA, Lofland GK, Marshall J, et al. Ann Thorac Surg. 2014. 97(4):1407–1412.
Performance and Durability of Cryopreserved Allograft Aortic Valve Replacements Witten JC, Durbak E, Houghtaling PL, Unai S, Roselli EE, Bakaeen FG, Johnston DR, Svensson LG, Jaber W, Blackstone EH, Pettersson GB. Ann Thorac Surg. 2021. 111(6):1893-1900. Article in Review.
Aortic Allograft Infection Risk Witten JC, Houghtaling PL, Shrestha NK, Gordon SM, Jaber W, Blackstone EH, Pettersson GB; Infectious Endocarditis Working Group. J Thorac Cardiovasc Surg. 2021 May 12:S0022-5223(21)00791-1. Article in Review
Long-term Outcomes of Aortic Valve Replacement with Aortic Homograft: 27 Years Experience Yazdchi F, Harloff M, Hirji S, Percy E, McGurk S, Cherkasky O, Malarczyk A, Newell P, Rinewalt D, Mallidi HR, Sabe AA, Aranki S, Shekar P, Kaneko T. Ann Thorac Surg. 2021: S0003-4975(21)00048-5. Article in Review
Initial Pediatric Cardiac Experience With Decellularized Allograft Patches. Lofland GK, O'Brien JE Jr, Gandy KL, et al. Ann Thorac Surg. 2012. 93(3):968–971.
Clinical Utility of Preimplantation Homograft Cultures in Patients Undergoing Congenital Cardiac Surgery Mehrotra P, Quinonez LG, Surana NK, Pollock N, Sandora TJ. J Pediatric Infect Dis Soc. 2017. 6(2):202–204.
Pathology of Valved Venous Homografts Used as Right Ventricle-to-Pulmonary Artery Conduits in Congenital Heart Disease Surgery Carreon CK, Benini A, Baird C, et al. J Thorac Cardiovasc Surg. 2019. 157(1):342–350.e3.
Risk Factors for Development of Endocarditis and Reintervention in Patients Undergoing Right Ventricle to Pulmonary Artery Valved Conduit Placement Mery CM, Guzmán-Pruneda FA, De León LE, et al. J Thorac Cardiovasc Surg. 2016. 151(2):432–441.e4412.
Homograft Use in Reoperative Aortic Root and Proximal Aortic Surgery for Endocarditis: A 12-year Experience in Highrisk Patients Preventza O, Mohamed AS, Cooley DA, et al. J Thorac Cardiovasc Surg. 2014. 48(3):989–994.
Reoperative Right Ventricular Outflow Tract Conduit Reconstruction: Risk Analyses at Follow Up Rodefeld MD, Ruzmetov M, Turrentine MW, Brown JW. J Heart Valve Dis. 2008. 17(1):119–126.
Reconstruction of Right Ventricular Outflow Tract in Neonates and Infants Using Valved Cryopreserved Femoral Vein Homograft Schiller O, Sinha P, Zurakowski D, Jonas RA. J Thorac Cardiovasc Surg. 2014. 147(3):874–879.
Tolerance to Incompatible ABO Blood Group Antigens Is Not Observed Following Homograft Implantation Feingold B, Raval JS, Galambos C, et al. Hum Immunol. 2011. 72(10):835–840.
Acellular Dermal Matrix (ArthroFlex®)
Two-Year Retrospective Patient-Reported Outcomes Following Superior Capsular Reconstruction. Hammad AM, Phillips C, Wijdicks CA, Adams CR, Denard PJ. Arthroscopy. 2021 May 27:S0749-8063(21)00511-9. doi: 10.1016/j.arthro.2021.05.025.
Histologic case series of human acellular dermal matrix in superior capsule reconstruction. Lederman ES, McLean JB, Bormann KT, Guttmann D, Ortega KD, Miles JW, Hartzler RU, Dorfman AL, Softic D, Qin X. Journal of Shoulder and Elbow Surgery. 2021. In press. doi: 10.1016/j.jse.2021.01.019
Graft Healing Does Not Influence Subjective Outcomes and Shoulder Kinmatics After Superior Capsule Reconstruction: A Prospective In Vivo Kinematic Study. Hughes JD, Kane G, LeVasseur CM, Gabrielli AS, Popchak AJ, Anderst WJ, Lin A. Journal of Shoulderand Elbow Surgery. 2021 Jul;30(7S):S48-S56. doi: 10.1016/j.jse.2021.02.026.
Minimum 2-year clinical outcomes after superior capsule reconstruction compared with reverse total shoulder arthroplasty for the treatment of irreparable posterosuperior rotator cuff tears in patients younger than 70 years. Lacheta L, Horan MP, Goldenberg BT, Dornan GJ, Higgins B, Millett PJ. J Shoulder Elbow Surg. 2020 Dec;29(12):2514-2522.
Clinical and Imaging Outcomes after Arthroscopic Superior Capsule Reconstruction with Human Dermal Allograft for Irreparable Posterosuperior Rotator Cuff Tears: A Minimum Two Year Follow Up. Lacheta L, Horan MP, Schairer WW, Goldenberg BT, Dornan GJ, Pogorzelski J, Millett PJ. Arthroscopy: The Journal of Arthroscopic and Related Surgery. 2020; 29(12):2514-2522.
Ultrasound Assessment of the Superior Capsular Reconstruction with Dermal Allograft: An Evaluation of Graft Thickness and Vascularity. Hirahara AM, Anderson WJ, Panero AJ.Arthroscopy: The Journal of Arthroscopic and Related Surgery. 2019 Dec;35(12):3194-3202.
Superior Capsular Reconstruction for the Operatively Irreparable Rotator Cuff Tear: Clinical Outcomes Are Maintained 2 Years After Surgery. Burkhart SS, Pranckun JJ, Hartzler RU. Arthroscopy. 2020 Feb;36(2):373-380.
Superior Capsular Reconstruction Reverses Profound Pseudoparalysis in Patients with Irreparable Rotator Cuff Tears and Minimal or No Glenohumeral Arthritis. Burkhart SS, Hartzler RU. Arthroscopy. 2019 Jan;35(1):22-28.
Superior Capsular Reconstruction With Arthroscopic Rotator Cuff Repair in a “Functional Biologic Augmentation” Technique to Treat Massive Atrophic Rotator Cuff Tears. Pennington WT, Chen SW, Bartz BA, Pennington JM. Arthrsco Tech. 2019;8(5):e465-472.
Outcome of Large to Massive Rotator Cuff Tears With and Without Extracellular Matrix Augmentation: A Prospective Comparative Study. Gilot GJ, Alvarez AM, Barcksdale L, Westerdahl D, Krill M, Peck E. Arthroscopy. 2015 Aug;31(8):1459-65.
Use of Acellular Dermal Matrix for Reconstruction of Massive Rotator Cuff Tears in an Older Population. Morris A, Samsell B, Dorsch K, McLean J, Moore M, Fox T, Roth C. Orthop Muscular Syst. 2018; 7(4).
Outcomes After Open Revision of Massive Rotator Cuff Tears With Biologic Patch Augmentation. Petri M, Warth RJ, Horan MP, Greenspoon JA, Millett PJ. Arthroscopy. 2016 Sept. 32(9): 1752-1760.
Rotator Cuff Tears at the Musculotendinous Junction: Classification and Surgical Options for Repair and Reconstruction. Millett PJ, Hussain ZB, Fritz EM, Warth RJ, Katthagen JC, Pogorzelski J. Arthrosc Tech. 2017 Jul 24. 6(4): e1075-e1085.9090i
A Simplified Approach for Arthroscopic Repair of Rotator Cuff Tear with Dermal patch Augmentation. Levenda AC & Sanders NR. Advances in Orthopedic Surgery. 2015. Article ID 423949
Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: A meta-analysis. Yin J, Yang K, Zheng D, Xu N. J Orthop Surg (Hong Kong). 2021 Jan-Apr;29(1):2309499020985195.
Revision Risk After Allograft Anterior Cruciate Ligament Reconstruction: Association With Graft Processing Techniques, Patient Characteristics, and Graft Type. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB. Am J Sports Med. 2015 Nov;43(11):2696-705.
The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Greaves LL, Hecker AT, Brown CH Jr. Am J Sports Med. 2008;36(7):1358-66.
Effect of Donor Age on Patellar Tendon Allograft ACL Reconstruction. Hampton DM, Lamb J, Klimkiewicz JJ. Orthopedics. 2012; Vol 35, Issue 8: e1173-31176.
Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: A meta-analysis. Yin J, Yang K, Zheng D, Xu N. J Orthop Surg (Hong Kong). 2021 Jan-Apr;29(1):2309499020985195.
Revision Risk After Allograft Anterior Cruciate Ligament Reconstruction: Association With Graft Processing Techniques, Patient Characteristics, and Graft Type. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB. Am J Sports Med. 2015 Nov;43(11):2696-705.
The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Greaves LL, Hecker AT, Brown CH Jr. Am J Sports Med. 2008;36(7):1358-66.
Effect of Donor Age on Patellar Tendon Allograft ACL Reconstruction. Hampton DM, Lamb J, Klimkiewicz JJ. Orthopedics. 2012; Vol 35, Issue 8: e1173-31176.
Distal biceps reconstruction 13 years post-injury. Burrus MT, Chhabra AB. Ther Adv Musculoskelet Dis. 2015 Apr;7(2):56-9.
All-Inside Posterior Cruciate Ligament Reconstruction With a GraftLink. Adler GG. Arthrosc Tech. 2013 Mar 29;2(2):e111-5. doi: 10.1016/j.eats.2012.12.004.
Tibial fixation of anterior cruciate ligament allograft tendons: comparison of 1-, 2-, and 4-stranded constructs. Park DK, Fogel HA, Bhatia S, Bach BR Jr, Gupta A, Shewman EF, Wang V, Verma N, Provencher MT. Am J Sports Med. 2009 Aug;37(8):1531-8.
Does irradiation affect the clinical outcome of patellar tendon allograft ACL reconstruction? Rihn JA, Irrgang JJ, Chhabra A, Fu FH, Harner CD. Knee Surg Sports Traumatol Arthrosc. 2006 Sep;14(9):885-96.
No Difference in Outcomes Following Osteochondral Allograft with Fresh Precut Cores Compared to Hemi-Condylar Allografts. Markus DH, Blaeser AM, Hurley ET, Mannino BJ, Campbell KA, Jazrawi LM, Alaia MJ, Strauss EJ, Alaia EF. Cartilage. 2021 Jun 2:19476035211021911.
Comparison of Autologous Chondrocyte Implantation and Osteochondral Allograft Transplantation of the Knee in a Large Insurance Database: Reoperation Rate, Complications, and Cost Analysis. Sochacki KR, Varshneya K, Calcei JG, Safran MR, Abrams GD, Donahue J, Chu C, Sherman SL. Cartilage. 2020 Oct 27:1947603520967065.
Osteochondral Allograft Transplant of the Patella Using Femoral Condylar Allografts: Magnetic Resonance Imaging and Clinical Outcomes at Minimum 2-Year Follow-up. Lin KM, Wang D, Burge AJ, Warner T, Jones KJ, Williams RJ 3rd. Orthop J Sports Med. 2020 Oct 28;8(10):2325967120960088.
Management of Chondral Lesions of the Knee: Analysis of Trends and Short-Term Complications Using the National Surgical Quality Improvement Program Database. Gowd AK, Cvetanovich GL, Liu JN, Christian DR, Cabarcas BC, Redondo ML, Verma NN, Yanke AB, Cole BJ. Arthroscopy. 2019 Jan;35(1):138-146.
Fresh Precut Osteochondral Allograft Core Transplantation for the Treatment of Femoral Cartilage Defects. Jones KJ, Mosich GM, Williams RJ. Arthrosc Tech. 2018 Jul 2;7(8):e791-e795.
Osteochondral Allograft Transplantation of the Femoral Trochlea. Cameron JI, Pulido PA, McCauley JC, Bugbee WD. Am J Sports Med. 2016 Mar;44(3):633-8.
Outcomes of osteochondral allograft transplantation in the knee. Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, Whelan DB, Cole BJ. Arthroscopy. 2013 Mar;29(3):575-88.
Fresh stored allografts for the treatment of osteochondral defects of the knee. Williams RJ 3rd, Ranawat AS, Potter HG, Carter T, Warren RF. J Bone Joint Surg Am. 2007 Apr;89(4):718-26.
DermACELL®
A Randomized Clinical Trial of a Human Acellular Dermal Matrix Demonstrated Superior Healing Rates for Chronic Diabetic Foot Ulcers Over Conventional Care and an Active Acellular Dermal Matrix Comparator Cazzell S, Vayser D, Pham H, Walters J, Reyzelman A, Samsell B, Dorsch K, Moore M. Wound Repair and Regeneration. 2017. 45:483-497.
A Randomized Controlled Trial Comparing a Human Acellular Dermal Matrix Versus Conventional Care for the Treatment of Venous Leg Ulcers Cazzell S. Wounds. 2019. 31(3):68-74.
A Prospective, Multicenter, Single-Arm Clinical Trial for Treatment of Complex Diabetic Foot Ulcers with Deep Exposure Using Acellular Dermal Matrix Cazzell S, Moyer P, Samsell B, Dorsch K, McLean J, Moore M. Adv Skin Wound Care. 2019. 32(9):409-415.
Healing Rates in a Multicenter Assessment of a Sterile, Room Temperature, Acellular Dermal Matrix Versus Conventional Care Wound Management and an Active Comparator in the Treatment of Full-Thickness Diabetic Foot Ulcers Walters J, Cazzell S, Pham H, Vayser D, Reyzelman A. Eplasty. 2016. 16: e10.
Letter to the Editor: Healing Rates in a Multicenter Assessment of a Sterile, Room Temperature, Acellular Dermal Matrix Versus Conventional Care Wound Management and an Active Comparator in the Treatment of Full-Thickness Diabetic Foot Ulcers Robb GL, Gurtner GC. Eplasty. 2016; 16: e27.
Macrophage phenotypes correspond with remodeling outcomes of various acellular dermal matrices Agrawal H, Tholpady SS, Capito AE, Drake DB, Katz AJ. Open Journal of Regenerative Medicine. 2012. 1(3): 51-59
Evaluation of host tissue integration, revascularization, and cellular infiltration within various dermal substrates Capito AE, Tholpady SS, AgrawalH, Drake DB, Katz AJ. Annals of Plastic Surgery. 2012. 68(5): 495-500.
A comparison of human and porcine acellularized dermis: Interactions with human fibroblasts in vitro Armour AD, Fish J, Woodhouse KA, Semple JL. Plastic and Reconstructive Surgery. 2006. 117(3): 845-856.
TheraSkin®
Multi-centre prospective randomised controlled clinical trial to evaluate a bioactive split thickness skin allograft vs standard of care in the treatment of diabetic foot ulcers [published correction appears in Int Wound J. 2022 Aug;19(5):1276]. Armstrong DG, Galiano RD, Orgill DP, et al. Int Wound J. 2022;19(4):932-944.
Randomized, Prospective, Blinded-Enrollment, Head-To-Head Venous Leg Ulcer Healing Trial Comparing Living, Bioengineered Skin Graft Substitute (Apligraf) with Living, Cryopreserved, Human Skin Allograft (TheraSkin). Towler MA, Rush EW, Richardson MK, Williams CL. Clin Podiatr Med Surg. 2018;35(3):357-365. doi:10.1016/j.cpm.2018.02.006.
A prospective, multicenter, randomized, controlled clinical trial comparing a bioengineered skin substitute to a human skin allograft. Sanders L, Landsman AS, Landsman A, et al. Ostomy Wound Manage. 2014;60(9):26-38.
A prospective comparison of diabetic foot ulcers treated with either a cryopreserved skin allograft or a bioengineered skin substitute. DiDomenico L, Landsman AR, Emch KJ, Landsman A. Wounds. 2011;23(7):184-189.
The Use of Cryopreserved Human Skin Allograft for the Treatment of Wounds With Exposed Muscle, Tendon, and Bone. Wilson TC, Wilson JA, Crim B, Lowery NJ. Wounds. 2016;28(4):119-125.
A retrospective matched-cohort study of 3994 lower extremity wounds of multiple etiologies across 644 institutions comparing a bioactive human skin allograft, TheraSkin, plus standard of care, to standard of care alone. Gurtner GC, Garcia AD, Bakewell K, Alarcon JB. Int Wound J. 2020;17(1):55-64. doi:10.1111/iwj.13231.
Matched-cohort study comparing bioactive human split-thickness skin allograft plus standard of care to standard of care alone in the treatment of diabetic ulcers: A retrospective analysis across 470 institutions [published correction appears in Wound Repair Regen. Barbul A, Gurtner GC, Gordon H, Bakewell K, Carter MJ. 2020 May;28(3):431]. Wound Repair Regen. 2020;28(1):81-89. doi:10.1111/wrr.12767.
A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Landsman AS, Cook J, Cook E, et al. Foot Ankle Spec. 2011;4(1):29-41.
Treatment of Deep Full-thickness Wounds Containing Exposed Muscle, Tendon, and/or Bone Using a Bioactive Human Skin Allograft: A Large Cohort Case Series. Flood MS, Weeks B, Anaeme KO, et al. Wounds. 2020;32(6):164-173.
The Economic Impact of Living Cell Tissue Products in Treating Diabetic Foot Ulcers and Venous Leg Ulcers in Patients with Commercial Insurance: A Retrospective Matched-Cohort Study. Barbul A, Gelly H, Obradovic K, Landsman A.Adv Skin Wound Care. 2023;36(5):243-248. doi:10.1097/01.ASW.0000922704.17906.26.
Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model. Henn D, Chen K, Maan ZN, et al. Int Wound J. 2020;17(4):925-936. doi:10.1111/iwj.13349.
Characterization of a Cryopreserved Split-Thickness Human Skin Allograft-TheraSkin. Landsman A, Rosines E, Houck A, et al. Adv Skin Wound Care. 2016;29(9):399-406. doi:10.1097/01.ASW.0000489991.32684.9e